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Summary: Applying a voltage to a nematic liquid erystal sandwiched between fwo
electrodes leads to convection when a critical threshold value of the driving voltage
18 exceeded. The patterns arising above this threshold are studied experimentally.
Special emphasis is put on an instability leading to travelling waves and the role of
defeets on the route to turbulence,

1 Introduction

The problem of pattern formation in nonequilibrium systems obviously is
the most important one in seience: The formation of life on eartl can sim-
ply be understood by assuming an ensemble of chemical compounds driven
out of equilibrium by the radiation of the sun [1]. In order to understand
some features of pattern formation processes, which are observed in many
different fields inclnding biology, chemistry and physics 2], one needs to
deal with simpler systems. Within physics the motivation to study order-
disorder transitions certainly has led to a renaissance of classical fluid dy-
namics during the last decade, The hydrodynamic instabilities offer the cx-
perimental advantage to allow reproducible measurements with well defined
boundary conditions. For the theoretical physicist they offer the advantage
to be based on well-defined theoretical grounds, the Navier-Stokes cqua-
tions. The most popular hydrodynamic instabilities are circular Couette
flow going unstable with respect to Taylor vortices [3] and Rayleigh-Bénard
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Fig. 1 Tmage of Williams rolls (V) IFig. 2 Tluctuating Williams rolls (10 V)
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convection [4]. A special case of the latter is thermal convection in a binary
mixture, where the thermal expansion competes with thermodiffusion lead-
ing to an oscillatory instability [5]. In this talk we would like to propose
a fluid dynamical system as useful for studies in pattern formation which
can not exactly be called classical: Convection patterns in an anisotropic
fluid, namely a nematic liquid crystal (Figs. 1 and 2). In the experiments
presented here the convection is driven by an electric field, thus it is called
clectro-hydrodynamic convection (EIIC) [0].

Many pattern forming instabilities including the ones mentioned above share
a common scenario summarized in Fig, 3. The system is driven from equilib-
rium by means of a control parameter, for example a chemical concentration,
a Reynolds number, a temperature difference or a voltage., The transition
from the ground state to the structured state takes place at a well defined
value of the control parameter. Above this threshold the order parameter
of the system, which might be a velocity, a temperature or a director angle
in the case of EHC, is different from zero. We concentrate here on systems
where this upper state shows up as a periodic pattern. Above the transition
point a wavenumber band exists as indicated by the upper part of Fig. 3.
Theoretical descriptions of pattern forming instabilities generally start with
a linear stability analysis of the spatially homogenous ground state. The
amplitude of the most unstable mode might then be described by means of
a weakly nonlinear analysis leading to an amplitude equation. The results
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I'ig. 3 Bifurcation scenario of pattern forming instabilities. At a well-defined value of the
control parameter the system looses stability to a periodic structure with the wavenumber
{e- The bifurcation is called suberitical if the bifurcating branch extends to negative values
of the control parameter, otherwise supercritical.

36



of the application of this concept to electro-hydrodynamic convection are
given in [G].

In this paper we deal with experimental aspects of EHC. In section 2 the
experimental methods used to explore EHC are described. The possible
patterns arising above the convection threshold are then displayed in section
3. Increasing the voltage leads to a higher degree of disorder, which might
manifest itsell in more complicated, but regular patterns, or in an increasing
number of defects as shown in Fig. 2. In section 4 we concentrate on more
recent and special results: The observation of travelling waves, which are
unexpected on the basis of the accepted theory for EHC, and the defect
statistics in the weakly turbulent regime.

2 Experimental Set-up and Procedure

The experimental set-up is shown in Fig, 4: the nematic liquid crystal is
sandwiched between two transparent, indiumoxid coated glass eletrodes. As
the working fluid, we use cither the nematic N-(p-methoxybenzylidene)-p-
butylaniline (MBBA) or the Merck Phase V, a mixture of azoxy compounds.
The former offers the advantage that the material parameters have been
measured extensively. Phase V on the other hand is more convenient to
observe oblique rolls, a different convection pattern which will be described
in more detail in chapter 3. The spacing between the two electrodes ranges
from 10 to 100 micrometer. The nematic is in the so called planar orienta-
tion: the director of the fluid is parallel to the plates. A preferred orientation
(along the y axis) is achieved by rubbing the electrodes. Because all the
material parameters of the liquid crystals are temperature dependent, it is
neccesary to stabilize the temperature of the cell. 'We reach a stability of
+0.005 K by means of a water circuit. The cell is mounted on a polarizing
microscope for flow visualisation.

Applying an ac-voltage across of the cell leads to convection when a certain
value of that voltage is exceeded. The convection shows up in the form of
parallel rolls as indicated in Fig, 4. Adjacent rolls have different sense of
rotation. The deformation of the director field is also indicated in Fig. 4. If
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I'ig. 4 The convection cell. The transparent electrodes have a typical spacing between
10-100 ytm. The director arientation is indicated by (-); the streamlines by the circles.
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hight polarized parallel to the director is sent through the cell, an image of
the convection pattern is formed as shown by the photograph 1. This visu-
alisation method is a special case of the well known shadowgraph method:

The light beams are bent inside the cell leading to intensity modulations.
In the usual shadowgraph method, density gradients cause the deflection.
In EHC, however, one deals with refraction of the extraordinary light inside
the liquid crystal. A discussion of the differential equation describing the
path of light inside the cell is given in [7]. If the optical anisotropy and the
orientation of the optical axis (i.e. the orientation of the director) inside the
cell are known, the path of the light and the intensity behind the cell can
be calculated. Figure 5 shows the result of such a numerical calculation of
the light path inside the cell. The most important result of the calculations
presented in [7] is the fact that the angle of the outgoing light grows with
the square of the director angle 8, but the light deviation inside the cell and
therefore the intensity modulation measured behind the cell contain a term
linear in #. This linear term is responsible for creating different images of
the upflow (broad intensity maxima in Fig. 1) and downflow (sharp maxima
in Fig. 1). Figure 6 shows a measurement of this modulation as a function
of the driving ac-voltage. From tlhe measured intensities and the shape of
the intensity curves a number proportional to the angle 8 of the director
ficld can be extracted, and the result is shown in I'ig. 7. The solid line is a
fit to the square root law expected for this supercritical bifurcation due to
symmetry arguments.

The optical methods can be used for time dependent studies as well, In
I'ig. 8 a voltage step from a suberitical value without convection to a super-
critical value and steps from a supereritical value to 3 different suberitical
alues have been applied. The intensity modulation along a line perpendic-
ular to the axis of the rolls is plotted as a function of time. The amplitude
grows or decays exponentially for small values. This growth or decay time
imcreases when approaching the critical point. This behaviour is the ana-
logue to the critical slowing down in equilibrium phase transitions.
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Fig. 5 The light path inside the convecting fluid is caleulated using the streamfunctions

. obtained by linear stability theory and the differential equation describing the path of the
extraordinary light.
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I'ig. T Order parameter extracted from the intensity measurements shown in Fig. 6.
The absolute distance of the [ocal plane of the microscope from the cell is not known
exactly, thus arbitrary units are given for the deflection of the light inside the cell. This

value, however, is proportional to the tilt angle & of the director and thus a suitable order
parameter,

As an alternative to the optical methods described above, electrical meth-
ods can be used. I'rom this point of view, the cell can be considered as a
capacitance parallel to an electric resistance. If not only the voltage, but
also the electrical current flowing into the cell and the phase between both
1s measured for different driving frequencies below the onset of convection,
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Fig. 8 Time dependence of the order parameter for different voltage steps, namely to
11.78 V (supercritical), 11.06 V, 11.03 V and 10.78 V (subcritical values), 30 Ilz.
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IFig. 9 Real (squares) and imaginary (plus) part of the resistance measured at a suberit-
ical ac-voltage of 4.5 V RMS.
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Iig. 10 The real (squares, left hand side labels) and imaginary (crosses) conductance
measured as a function of the driving voltage at 60 ITz. The change of the slope indicates
the onset of convection or a secondary instability.
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both the resistive part and the capacitance can be extracted as demon-
strated in Fig. 9. The onset of convection can be detected as an increase in
the electrical conductance of the cell. This measurement is the analogue of
the heat transport measurements in thermal convection. Figure 10 shows
an example. Both the resisistive part (current and voltage in phase) and the
imaginary part (phase difference 90 degrees) have been plotted as a function
of the driving voltage. The increase in the resistive part reflects the fact
that power 1s needed to drive the convection of the fluid. The change of the
imaginary part does not have such a simple physical interpretation. It can
be positive or negative depending on the driving frequency.

3 Pattern Formation

The convection pattern shown in Fig. 1 is not the only one possible in
EHC. In fact, the kind of pattern appearing at threshold depends on the
nematic used, 1ts temperature, its electrical conductivity, the thickness of
the cell and the frequency of the driving voltage. Figure 11 shows the
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I'ig. 11 Phase diagram for a 15 pum Phase V cell. Below 350 ITz convection sets in
as a steady pattern, between 350 Iz and 420 IIz it starts as a moving pattern with the
[requency given by the triangles; above 420 1Tz dielectric rolls appear.
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threshold measurement of a Phase V cell of 15 gm thickness. Here both the
threshold voltage and the kind of pattern appearing above threshold are a
function of the driving frequency. The simplest pattern occurs at medium
frequencies: The stationary Williams rolls shown in Fig. 1. Figure 12 shows
a measurement of their time dependence which is a boring one: There is no
hint for a movement within 25 hours.

Decreasing the frequency leads to another type of stationary roll pattern:
the zig-zags shown in Fig. 13. Here the rolls are not normal to the director
ike in Fig. 1. They form a finite angle with respect to the normal axis,
which becomes smaller when approching a critical frequency, the so called
Lifschitz-point [8,9]. For frequencies higher than this critical frequency the
rolls are normal to the orientation of the director.

Figure 14 shows a measurement of the angle of the rolls with respect to the
axis normal to the director. On the basis of symmetry arguments, one would
expect the angle to approach zero at the Lifschitz-point via a square root
law. The measurement does not exactly support this statement. On the
other hand it is not really contradictory, because all statements stemming
from amplitude equations are local ones. The range of applicability of the
square root law might be very small in this case.

Increasing the frequency above the normal roll regime leads to another type
of instability: Travelling waves occur. They come in like a supercritical
bifurcation as demonstrated in the Figs. 15,16. This travelling pattern is
not explained by the stability analysis presented in [6]. We will discuss
possible explanations in more detail in chapter 4.

Fig. 13 Image of convection in the oblique roll regime.
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Fig. 17 Image of dielectrie rolls obtained with stroboscopic illumination.

At higher frequencies the first instability to occur are the so called dielectric
rolls. The difference between the low-frequency and the high frequency
regime is illustrated nicely in [10]: In the first state, the director and flow
fields are approximately stationary within one period of the external driving,
while in the dielectric regime these fields oscillate following the external
frequency. This fact makes dielectric rolls hard to observe, because the
linear light modulation is averaged to zero in time. This difficulty can be
overcome with stroboscopic illumination, which had been used to take the
photograph 17.

The patterns shown up to now bifurcate directly from the homogenous
ground state, 1.e. it should be possible to describe them by means of a linear
stability theory. If the driving voltage is increased beyond the critical one,
one would expect the amplitude of the director field and the velocity to Crow
according to a square root law as already indicated in Fig. 7. Predicting
the magnitude of this growth requires a nonlinear amplitude expansion as
given in [G]. Experimentally, the optical method described above might be
used to extract the tilt angle of the director field, IKnowing the field of the
optical axis within the liquid erystal, one can calculate the distance between
the real and imaginary foci shown in Fig. 5. This distance can be measured
pretty well with a microscope, and from this measurement the maximum
angle of the director can be extracted (Fig. 18). The comparison with the
nonlinear amplitude expansion (solid line) presented in [6] at the proper
[requency seems pretty good, if one takes into account that no adjustable
parameters are involved in the plot.

As demonstrated above, the order parameter increases with an increase of
the control parameter. This growth of the amplitude does not go beyond
some limit. At a second threshold the primary patterns go unstable with
respect to the formation of new ones. For these patterns the sentence stated
for the primary patterns has to be repeated: The kind of instability depends
on many different parameters. We like to present two examples of patterns
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['ig. 18 Director angle obtained by measuring the distance between the real and imagi-
nary foci. The solid line is the result of the nonlinear calculations presented in [G].

Fig. 19 The chevron pattern, the result of a secondary instability in the dielectric roll

regime.

observed in the nonlinear regime: chevrons and defects. Increasing the volt-
age in the dielectric regime slightly above threshold leads to a characteristic
flow pattern: the herringbone-like chevrons shown in the photograph 19.
This pattern is unexplained theoretically, but it had been speculated [10]
that its origin can be understood even by linear theory: Slightly above the
first threshold linear stability analysis yields a second mode, and the super-
position of these modes might be a possible explanation for the observed
chevron pattern.

A charactenstic feature of convection in the nonlinear regime 1s the exis-
tence of defects. In the following, we concentrate on the dislocations shown
in Fig. 20. They are created by a secondary instability [11], which seems to
have its reason in mean-flow effects. Sudden jumps in the amplitude or fre-
quency of the driving voltage also creates this kind of imperfection of the roll

45



. JI

¢ ]
¢
2
3

Fig. 20 The image of a defect is shown on the left hand side (virtual image). The slow
modulation field extracted from this image is shown on the right hand side (black: large
amplitude, white: small amplitude). The defect is located at the crossing of Lthe zero lines
of the real and the imaginary part of the slow modulation field.

pattern. In general, they are very robust and in fact hard to avoid-analogue
to the process of crystal growing it is much harder to create perfect patterns
than a structure accompanied by defects. Once created, the dislocations are
stable at any driving voltage for topological reasons: they can annihilate in
pairs only. Because they exist even slightly above threshold, they should he
adequately described within the framework of a weakly nonlinear analysis,
1.e. an amplitude equation. As an ansatz, one takes the linear unstable
mode exp(ikx) and determines its slowly varying complex amplitude A(z,y).
The concept indeed leads to a realistic description of a defect. The exper-
imentalist observes the real part of the field A(z,y) - exp(ikz). The slowly
varying amplitude can be extracted from this field by means of a demod-
ulation procedure. Figure 20 shows a the magnitude of the Az, y)-field,
together with the lines where the real and imaginary part of this field are
zero, The core of the defect is located where these lines cross.

4 Travelling Waves

Now we concentrate on one of the patterns shown in section 3, namely trav-
elling waves (TW). As already mentioned above, they are unexplained by
the theoretical calculations, but have nevertheless been observed by various
experimental groups [12]. In order to discuss possible explanations for this
kind of movement, let us recall a system where travelling waves are observed
as well and theoretically well understood. The most popular example in the
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field of fluid dynamics seems to be thermal convection in a binary mixture.
Here a mixture of two fluids, say water and ethanol, 1s heated from below.
Convection then sets 1n as an oscillatory instability. This 1s best demon-
strated by pulse methods: A small (mechanical or thermal) distortion of
the system leads to an oscillatory response as demonstrated in Fig. 21. A
pulse of waves travelling out of the middle of the convection channel [13],
where the heater 1s located, to the left and right of the cell 1s clearly seen,
The reason for the oscillatory response in binary mixture convection 1s well
understood: linear stability analysis predicts that the system goes unstable
via a Hopf bifurcation, 1.e. the linear growth rate contains an imaginary
part.

When looking for possible explanations of the TW, one should compare to
other systems as well: Taylor vortices between conical cylinders drift in a
preferred direction [14], a broken left-right symmetry might induce drifting
convection patterns [13], or convection patterns in a cylindrical convection
cell might drift when the boundary conditions are spatially modulated [15].
We call this kind of movement drifting rolls instead of TW. They differ
from the TW in the sense that they are induced by the broken symmetry
of the systemn — they travel in one preferred direction. It 1s speculative
but plausible to assume that non-parallel plates of the EHC-cell might lead
to a drifting pattern similar to the drifting Taylor vortices between conical
cylinders. In fact, it seems to be very difficult to prepare cells showing per-
fectly stationary rolls on the time scale presented in Fig. 12. Most often, the
rolls drift with a speed of less than a wavelength/minute. One has to con-
sider the question if the TW presented in Fig. 15 are of tlis drifting nature,
i.e. caused by imperfections of the sample rather than by a Hopf bifurcation.
One strong argument against this assumption is already the fact that the
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Fig. 21 TPulse of travelling waves caused by a heat pulse in a binary mixture of water
and ethanol. The heater is located on the outside of the glass in the middle of the cell,

where no intensity lines are visible.
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Fig. 22 Standing waves of oscillatory Williams rolls stabilized by an external modula-
tion,

observed TW can travel in both directions and can chan ge direction even
spontancously. Morcover, a theory concerned with the influence of a tempo-
ral modulation of the external driving on TW caused by a Hopf bifurcation
supports this scenario. It was predicted, for instance, that TW should loose
stability with respect to standing waves if the external frequency is close
to double the linear frequency of the system [16]. This is indeed observed
as demonstrated in Fig. 22. Roughly speaking, the stabilizing influence of
the modulation on standing waves can be understood as follows: Both lin-
car modes, the waves travelling to the left and the ones travelling to the
right are phase locked and thus stabilized. Their superposition forms the
standing wave.

Whether the external modulation leads to standing waves or not is a ques-
tion of its frequency and amplitude. The phase diagram obtained with
modulation is presented in Fig. 23. One has no convection on the left side
of the line formed by crosses and plus signs. Convection may set in as a
standing wave (diamonds) or as a travelling wave (plus). The solid line is
a fit to the theoretical curve given by Riecke et al. [16]. This semiquan-
titative agreement between the experimental results and the ideas based
on general symmetry arguments for the problem of a modulated Hopf bi-
furcation strongly supports the idea that a Hopf bifurcation is responsible
for TW observed in EIIC. Moreover, we like to point out that the modu-
lation provides a useful tool for the measurements of the coefficents of the
amplitude equation describing the TW [17].

The open circles in Fig. 23 indicate the upper bound of the standing wave
state. Beyond this limit the system shows a disordered pattern consisting
of nonperiodic changes in the direction of the travelling accompanied by
defects [18]. This instability mechanism can be understood by a stability
analysis of the coupled amplitude equations. The system is expected to
go unstable with respect to the so-called Benjamin-Feir instability, which
indeed has been shown to be able to produce chaotic spatio-temporal be-

haviour [19].
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Fig. 24 llistogram of defect pairs for different driving voltages. The distribution seems
well described by the solid line [20], while the dashed line (Poisson distribution) does not
seem to be adequate. The inset demonstrates that the defects sets in 7.8% above threshold,

Lhus they are very likely caused by a sccondary instability.
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Finally, we like to present another route to disorder. When increasing the
driving voltage beyond the threshold voltage in an ordered TW state, one
finds a well defined voltage where the correlation function starts to decay
[12]. This is accompanicd by the obscrvation of defects. Counting these
defects in a small spatial window as a function of time gives no hint for
any regularity within the time series. This leads to the idea of looking
for a theorectical description. Such an ansatz has been made by Gil et
al. [20]. With the idca that the rate of creation of defects is a voltage-
dependent constant, but the rate of annihilation processes is proportional to
the number of defects squared one ends up with a distribution looking like a
squared Poisson distribution for the number of defect pairs. This function is
shown as a solid linc in Fig. 24 together with the histograms of the numbers
of pairs counted. If one takes into account that the distribution offers no
adjustable parameter provided that the mean value is given the agreement
can be called very good. This distribution, however, is not cxpected to be
valid for travelling waves only. An agreement of similar quality had been
found for steady convection as well [18].

5 Discussion

Obviously, clectro-hydrodynamic convection in nematic liquid crystals is a
very sultable candidate for experiments dealing with pattern formation and
order-disorder transitions in nonequilibrium systems. This system, when
compared to other fluid dynamical systems, has at least two disadvantages:
There are more material parameters, and they are less well known when
comparcd to say thermal convection in water; and the mathematical de-
scription of the istability is more complex when compared to instabilities
in simple fluids.

— The most striking advantage of the system is in the shorter time scale:
reaching the instability point in the double diffusive convection exper-
iment (Fig. 21) takes about a day — the same can be achieved in EHC
in less than a minute.

— The degeneracy of the wavevector present in an isotropic fluid is raised
because of the preferred axis of the system. This, in principle, simpli-
fies the theoretical description of the nonlinear state and in practice
makes it simpler to perform reproducible measurements.

— The instability is driven by an ac-voltage whose amplitude and fre-
quency are experimentally easily controllable parameters. By changing
the amplitude a few volts the complete transition scenario from highly
ordered patterns to a very disordered two-dimensional turbulent state
can be studied. Changing the frequency of the applied voltage of-
fers a degree of freedom. Thus bifurcations of higher codimension are
accessible.

— The driving ac-field does not break the up-down symmetry of the sys-
tem. This fact offers the possibility for the eigenmodes to be even
or odd with respect to the middle of cell. Thus, two classes of solu-

50



tions (Williams rolls and diclectric rolls) become available adding to
the richness of the system.

Cells with large aspect ratios can be built allowing the observation of
spatio-temporal disorder.

Besides being well suited for studies in pattern formation the system
offers the challenge to be nontrivial in nature. The interaction of hy-
drodynamics and electrical forces in an anisotropic fluid is a beautiful
and fascinating field of physics with the additional advantage to be of
technical use.

Most important, the fascination of EHC scems to attract especially
tfriendly people like E. Bodenschatz, L. Kramer, W. Pesch, and W.
Zimmermann. We like to thank them for many helpful suggestions,
patient explanations and enthusiastic support.
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